
Simple Optimizations 



In this section we will discuss a number of ad hoc 
optimizations that can be applied to various stages 
of the compiler.  None of these represent huge 
savings and they slow down the compilation time, 
but they will speed up your compiled code.  Most 
programmers are willing to trade slower 
compilation (within reason) for faster execution:  
during the lifecycle of a significant program you 
compile infrequently and execute often. 



Constant folding 
 

This is something you would apply to the 
intermediate representation of a program, such as 
our parse tree. 
 
Suppose you have an expression x=3*4+5, which 
parses to 
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Obviously, this could, and should, be replaced by the 
tree 

x 

= 

17 



Similarly, the code x=3*4+y has parse tree 
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3 4 

This could be replaced by 

x 

= 

+ 

y 12 



This is called constant folding.   
 
There are many variations on constant folding.   
 
Q: What is an algorithm for what we have discussed 
so far? 



A:  Make a bottom-up pass through the tree.  At 
each node, if the node represents an arithmetic 
operator and both children of the node are values 
known at compile time (e.g., numbers or known 
constants) then replace the node with a constant 
that is the result of the expression. 



Now, what about 34+y-6?  We would like to replace 
this by 28+y 
 There are two issues here: 

a) Addition is commutative (a+b=b+a) and 
subtraction is not.  It is easier to rearrange an 
addition tree than a subtraction tree. 

b) Since arithmetic operations are left-
associative, it helps to move variables as far to 
the right as possible. 



Here is a sequence of steps for turning 34+y-6 into 
28+y: 
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Note that sometimes expressions such as these 
might not be the fault of the programmer.  For 
example, if A is a 10X15 array and the programmer  
refers to A[3][5], the l-value for this expression is  
A+3*15+5.  It would be nice if our compilers 
translated this to A+50. 



Loop Jamming 
A lot of programs spend most of their time running 
around loops.  Anything you can do to speed up 
loops is worthwhile. 
 
 



Loop jamming refers to joining together the bodies 
of two loops: 
 for (int i=0; i < 300; i++) 
  total = total+A[i] 
 for (int i = 0; i < 300; i++) 
  B[i]=A[i]/A[i+1] 
 
could become 
 for (int i=0; i < 300; i++) 
  total = total+A[i] 
  B[i]=A[i]/A[i+1] 
 
 
 



We can jam two loops if their guards are the same 
and their bodies don't interact.  For example, we 
could not jam 
 
 for (int i=0; i < 300; i++) 
  total = total+A[i] 
 for (int i = 0; i < 300; i++) 
  B[i]=A[i]/total 
 
 



Loop Unrolling 
 

Loop unrolling replaces a loop with straight code: 
 for (i=0; i < 4; i++) 
  A[i][j]=0 
 
is replaced by 
 A[0][j]=0 
 A[1][j]=0 
 A[2][j]=0 
 A[3][j]=0 
 



Suppose A is a 4x4 array of 4-byte integers.  Then 
 A[0][j]=0 
 A[1][j]=0 
 A[2][j]=0 
 A[3][j]=0 
becomes 
 A[0*4+j]=0 
 A[1*4+j]=0 
 A[2*4+j]=0 
 A[3*4+j]=0 
 



A smart compiler might evaluate this as follows: 
• put A=4*j into the accumulator; this is the 

address of A[0][j] 
• movl $0, 0(%rax) 
• movl $0, 16(%rax)  #address of A[1][j]  
• movl $0, 32(%rax)  #address of A[2][j] 
• movl $0, 48(%rax)  #address of A[3][j] 

 
This would execute much more quickly than the 
original for-loop. 



Loop unrolling  requires you to know at compile 
time how many times the loop will be executed.  It 
is really only practical when the number of loop 
iterations is small.   



Loop Invariants 
 

CS 150 students love to write code such as 
 A = 3 
 B = 4 
 x = 1 
 while (x<10) { 
  C=A*B 
  x = x+1 
 } 
 
Should the compiler rescue them? 
   



A loop invariant is an expression that doesn't 
change yet is evaluated every time around a loop. 
We can save cycles by evaluating the expression 
once, prior to the loop, and just referring to its 
value within the loop. 
 



Here's another example: 
 
 x = 0 
 while (x<Width*Height) { 
  ... 
  x = x+1 
 } 
 
If Width and Height are both on the  order of 1000 
and if they don't change in the loop body then the 
expression Width*Height is evaluated 1,000,000 
and has the same value each time. 



How would you find loop invariants? 



Here is an algorithm for finding loop invariants: 
• Keep a set CHANGED, initially empty.  This will 

contain all of the variables that will be modified in 
the loop. 

• Make a bottom-up pass through the loop body and 
guard, adding to CHANGED any variable that is on 
the left side of an assignment statement. 

• Make another bottom-up pass through the loop 
body and guard, marking every variable in 
CHANGED and every internal node with at least one 
marked child. 

• Any unmarked node is invariant and can be 
evaluated once, prior to the loop. 

• Every assignment statement where the right side is 
unmarked can also be executed once, prior to the 
loop. 



For example: 
 A = 10 
 B = 17 
 x = 1 
 while (x < A*B) { 
  y = A+B; 
  z = A+y; 
  x=x+1; 
 } 
CHANGED consists of {x, y, z}.  The expressions  A*B 
and y=A+B can be done prior to the loop.  A more 
subtle algorithm can pull out z=A+y. 



Basic Blocks 
 

A basic block is a portion of a program with 
a) Only 1 entry point 
b) Control only flows from one statement to the 

next.  No function calls, no conditional 
statements or loops. 



Example: 
 A = 0; 
 x = 1 
 while (x< 100) { 
  B = A+1; 
  y=B+1; 
  if (y < x) { 
   B=B+1; 
   C=A+1; 
  } 
  x=y; 
 } 
The basic blocks are inside the rectangles. 



Here is an algorithm by Jean-Paul Tremblay and Paul 
Sorenson for eliminating redundant expressions: 
 
Divide the code into basic blocks and apply the 
following to each block. 
 



First, assign two numbers to each node of the parse 
tree: 

a) The sequence number of an internal node is 
its index  (starting with 1) in a post-order 
traversal of the tree, not including the leaves. 

b) The index number of a variable at any point is 
the sequence number of the node that last 
assigned a value to the variable, or 0 if the 
node is not assigned to in this block.  The 
index number of an array is the sequence 
number of the last assignment to any element 
of the array. 

 
 



c) The index number of an internal node is the 
largest index of its descendants. 
 
 

THEN 
 If two subtrees are identical and have the same 
index number at their roots, the second can be 
replaced by a reference to the first. 



Example: 
 J=1; 
 K=2*J; 
 J=J+2*J; 
 K=2*J; 
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Sequence numbers are in green 
Index numbers are in red. 
 

The subtree in the lower 
oval can be replaced by a 
link to the upper one. 
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Strength Reduction 
Strength Reduction replaces "strong" expensive 
operations by cheaper ones.  For example, 
multiplication or division by a power of 2 can be 
replaced by a shift.   
 
Multiplication in general is a very expensive 
operation -- on the basic Pentium chip a 
multipication of two values in registers takes 11 
clock cycles, while the addition of two registers 
takes 1.  In many loops a multiplication of a 
constant times a loop counter can be replaced by 
an addition. 



For example,  the loop 
 for(i=0; i <n; i++)  
  B[i]=0 
 
can be replaced by 
 t=B 
 i=0 
 while (i<n) { 
  *t=0 
  t=t+4 
  i=i+1 
 } 

which is equivalent to 
 i=0 
 while (i < n) { 
  *(B+4*i) = 0 
  i = i+1 
 } 



Similarly, the following loop, which assigns the 
identity matrix to nxn matrix A, 
 for(i=0; i<n; i++) { 
  for(j=0; j<n;j++) 
   A[i][j]=0 
  A[i][i]=1 
 } 



can be rewritten as 
 i=0 
 while (i<n) { 
  j=0 
  while (j<n) { 
   A+4*(n*i+j) = 0 
   j = j+1 
  } 
  A+4*(n+1)*i 
  i=i+1 
 } 



We can avoid the multiplications with 

 i=0 

 t1=4*n       # the row increment 
 t2= A  # starting row address 
 t3=A # starting diagonal address 
 while (i<n) { 
  j=0 
  t=t2 
  t2=t2+t1 
  while (j<n) { 
   *t = 0 
   j = j+1 
   t=t+4 
  } 
  *t3=1 
  t3=t3+t1+4 
  i=i+1 

 } 

 



Peephole Optimizations 
 
You can actually save 5% to 15% of the running time 
of a compiled program by looking through the 
generated code for stupid sequences.  For example, 

A. Jumps to jumps 
B. Dumb sequences of operations, such as 

 movl %eax, 8(%rbx) 
 movl 8(%rbx), %eax 
or 
 addq $0, %rsp 
or  
  



 or 
  movl $1, %eax 
  push %eax 
  movl -8(%rbx), %eax 
  addl 0(%rsp), %eax 
  addq $8, %rsp 



C. Unreachable code, such as 
  jmp .L5 
  movl $4, %eax 
 
D. Things that can be simplified algebraically, 

such as 
  imul $1, %eax 
 or 
  addl $0, %eax 


