
Simple Optimizations

In this section we will discuss a number of ad hoc
optimizations that can be applied to various stages
of the compiler. None of these represent huge
savings and they slow down the compilation time,
but they will speed up your compiled code. Most
programmers are willing to trade slower
compilation (within reason) for faster execution:
during the lifecycle of a significant program you
compile infrequently and execute often.

Constant folding

This is something you would apply to the
intermediate representation of a program, such as
our parse tree.

Suppose you have an expression x=3*4+5, which
parses to

x

=

+

5 *

3 4

x

=

+

5 *

3 4

Obviously, this could, and should, be replaced by the
tree

x

=

17

Similarly, the code x=3*4+y has parse tree

x

=

+

y *

3 4

This could be replaced by

x

=

+

y 12

This is called constant folding.

There are many variations on constant folding.

Q: What is an algorithm for what we have discussed
so far?

A: Make a bottom-up pass through the tree. At
each node, if the node represents an arithmetic
operator and both children of the node are values
known at compile time (e.g., numbers or known
constants) then replace the node with a constant
that is the result of the expression.

Now, what about 34+y-6? We would like to replace
this by 28+y
 There are two issues here:

a) Addition is commutative (a+b=b+a) and
subtraction is not. It is easier to rearrange an
addition tree than a subtraction tree.

b) Since arithmetic operations are left-
associative, it helps to move variables as far to
the right as possible.

Here is a sequence of steps for turning 34+y-6 into
28+y:

-

6 +

34 y

+

6

+

34 y

-

+

34 y

+

6

+

34

y

-

Note that sometimes expressions such as these
might not be the fault of the programmer. For
example, if A is a 10X15 array and the programmer
refers to A[3][5], the l-value for this expression is
A+3*15+5. It would be nice if our compilers
translated this to A+50.

Loop Jamming
A lot of programs spend most of their time running
around loops. Anything you can do to speed up
loops is worthwhile.

Loop jamming refers to joining together the bodies
of two loops:
 for (int i=0; i < 300; i++)
 total = total+A[i]
 for (int i = 0; i < 300; i++)
 B[i]=A[i]/A[i+1]

could become
 for (int i=0; i < 300; i++)
 total = total+A[i]
 B[i]=A[i]/A[i+1]

We can jam two loops if their guards are the same
and their bodies don't interact. For example, we
could not jam

 for (int i=0; i < 300; i++)
 total = total+A[i]
 for (int i = 0; i < 300; i++)
 B[i]=A[i]/total

Loop Unrolling

Loop unrolling replaces a loop with straight code:
 for (i=0; i < 4; i++)
 A[i][j]=0

is replaced by
 A[0][j]=0
 A[1][j]=0
 A[2][j]=0
 A[3][j]=0

Suppose A is a 4x4 array of 4-byte integers. Then
 A[0][j]=0
 A[1][j]=0
 A[2][j]=0
 A[3][j]=0
becomes
 A[0*4+j]=0
 A[1*4+j]=0
 A[2*4+j]=0
 A[3*4+j]=0

A smart compiler might evaluate this as follows:
• put A=4*j into the accumulator; this is the

address of A[0][j]
• movl $0, 0(%rax)
• movl $0, 16(%rax) #address of A[1][j]
• movl $0, 32(%rax) #address of A[2][j]
• movl $0, 48(%rax) #address of A[3][j]

This would execute much more quickly than the
original for-loop.

Loop unrolling requires you to know at compile
time how many times the loop will be executed. It
is really only practical when the number of loop
iterations is small.

Loop Invariants

CS 150 students love to write code such as
 A = 3
 B = 4
 x = 1
 while (x<10) {
 C=A*B
 x = x+1
 }

Should the compiler rescue them?

A loop invariant is an expression that doesn't
change yet is evaluated every time around a loop.
We can save cycles by evaluating the expression
once, prior to the loop, and just referring to its
value within the loop.

Here's another example:

 x = 0
 while (x<Width*Height) {
 ...
 x = x+1
 }

If Width and Height are both on the order of 1000
and if they don't change in the loop body then the
expression Width*Height is evaluated 1,000,000
and has the same value each time.

How would you find loop invariants?

Here is an algorithm for finding loop invariants:
• Keep a set CHANGED, initially empty. This will

contain all of the variables that will be modified in
the loop.

• Make a bottom-up pass through the loop body and
guard, adding to CHANGED any variable that is on
the left side of an assignment statement.

• Make another bottom-up pass through the loop
body and guard, marking every variable in
CHANGED and every internal node with at least one
marked child.

• Any unmarked node is invariant and can be
evaluated once, prior to the loop.

• Every assignment statement where the right side is
unmarked can also be executed once, prior to the
loop.

For example:
 A = 10
 B = 17
 x = 1
 while (x < A*B) {
 y = A+B;
 z = A+y;
 x=x+1;
 }
CHANGED consists of {x, y, z}. The expressions A*B
and y=A+B can be done prior to the loop. A more
subtle algorithm can pull out z=A+y.

Basic Blocks

A basic block is a portion of a program with
a) Only 1 entry point
b) Control only flows from one statement to the

next. No function calls, no conditional
statements or loops.

Example:
 A = 0;
 x = 1
 while (x< 100) {
 B = A+1;
 y=B+1;
 if (y < x) {
 B=B+1;
 C=A+1;
 }
 x=y;
 }
The basic blocks are inside the rectangles.

Here is an algorithm by Jean-Paul Tremblay and Paul
Sorenson for eliminating redundant expressions:

Divide the code into basic blocks and apply the
following to each block.

First, assign two numbers to each node of the parse
tree:

a) The sequence number of an internal node is
its index (starting with 1) in a post-order
traversal of the tree, not including the leaves.

b) The index number of a variable at any point is
the sequence number of the node that last
assigned a value to the variable, or 0 if the
node is not assigned to in this block. The
index number of an array is the sequence
number of the last assignment to any element
of the array.

c) The index number of an internal node is the
largest index of its descendants.

THEN
 If two subtrees are identical and have the same
index number at their roots, the second can be
replaced by a reference to the first.

Example:
 J=1;
 K=2*J;
 J=J+2*J;
 K=2*J;

;

;

;

J

=

J 1 =

K *

2 J =

+

*

2 J

J

K

=

*

2 J

6

1

2

3

4

5

6

7

8

9

10

11

Sequence numbers are in green
Index numbers are in red.

The subtree in the lower
oval can be replaced by a
link to the upper one.

0

0

0

1

1

1

1

1

1

1

1

1

3

6

6

6

6

6

Strength Reduction
Strength Reduction replaces "strong" expensive
operations by cheaper ones. For example,
multiplication or division by a power of 2 can be
replaced by a shift.

Multiplication in general is a very expensive
operation -- on the basic Pentium chip a
multipication of two values in registers takes 11
clock cycles, while the addition of two registers
takes 1. In many loops a multiplication of a
constant times a loop counter can be replaced by
an addition.

For example, the loop
 for(i=0; i <n; i++)
 B[i]=0

can be replaced by
 t=B
 i=0
 while (i<n) {
 *t=0
 t=t+4
 i=i+1
 }

which is equivalent to
 i=0
 while (i < n) {
 *(B+4*i) = 0
 i = i+1
 }

Similarly, the following loop, which assigns the
identity matrix to nxn matrix A,
 for(i=0; i<n; i++) {
 for(j=0; j<n;j++)
 A[i][j]=0
 A[i][i]=1
 }

can be rewritten as
 i=0
 while (i<n) {
 j=0
 while (j<n) {
 A+4*(n*i+j) = 0
 j = j+1
 }
 A+4*(n+1)*i
 i=i+1
 }

We can avoid the multiplications with

 i=0

 t1=4*n # the row increment
 t2= A # starting row address
 t3=A # starting diagonal address
 while (i<n) {
 j=0
 t=t2
 t2=t2+t1
 while (j<n) {
 *t = 0
 j = j+1
 t=t+4
 }
 *t3=1
 t3=t3+t1+4
 i=i+1

 }

Peephole Optimizations

You can actually save 5% to 15% of the running time
of a compiled program by looking through the
generated code for stupid sequences. For example,

A. Jumps to jumps
B. Dumb sequences of operations, such as

 movl %eax, 8(%rbx)
 movl 8(%rbx), %eax
or
 addq $0, %rsp
or

 or
 movl $1, %eax
 push %eax
 movl -8(%rbx), %eax
 addl 0(%rsp), %eax
 addq $8, %rsp

C. Unreachable code, such as
 jmp .L5
 movl $4, %eax

D. Things that can be simplified algebraically,

such as
 imul $1, %eax
 or
 addl $0, %eax

